جامعة قسنطبنة

R

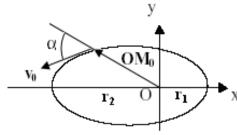
السلسلة رقم 03 : تحريك النقطة المادية

- التمرين 01: جسم كتاته \mathbf{m} يتحرك على مستوي أفقي بحيث ينطلق بسرعة ابتدائية $\overline{V_0}$. بعد قطع مسافة \mathbf{d} يتوقف الجسم عن الحركة، أستنتج قيمة معامل الاحتكاك \mathbf{f} ، و زمن توقف الجسم .

- التمرین 02: جسم كتاته m موجود عند قمة نصف كرة من الجلید نصف قطرها m ، ینزلق دون احتكاك و دون سرعة ابتدائیة

القوى التي تؤثر في الجسم، ثم أحسب قوة رد الفعل عند النقطة \mathbf{M} بدلالة الزاوية \mathbf{g} ، \mathbf{g} و \mathbf{m} .

2- أوجد الزاوية التي يغادر بها الجسم الكرة و السرعة التي اكتسبها.


 $\overrightarrow{F_2}= {
m b.}\; \cos(\omega {
m t}).\; \overrightarrow{j}$ و $\overrightarrow{F_1}= {
m a.}\; \sin(\omega {
m t}).\; \overrightarrow{i}:$ قو تاثير قوتين ${
m m}$ تاثير قوتين ${
m m}$ قو تاثير ${
m m}$ قالير قوتين ${
m m}$ و يملك ${
m m}$ مع ${
m m}$ و يملك ${
m m}$ و يملك (${
m V_0}=-{
m a/m}\omega$, ${
m v}_0=-{
m b/m}\omega^2$)

1- أوجد عبارة التسارع

2- أوجد عبارة السرعة

3- أوجد معادلة المسار

_ التمرين <u>04:</u> بين أن في حالة نقطة مادية خاضعة لتأثير قوة مركزية وكان مسار ها دائريا، فإن حركتها تكون دائرية منتظمة.

- التمرين 05: نقطة مادية تحت تأثير قوة مركزية مركزها \mathbf{O} ، تسلك مسارا إهليجيا. عند النقطة \mathbf{M}_0 ، شعاع موقعها هو \mathbf{OM}_0 و سرعتها \mathbf{v}_0 مع الزاوية \mathbf{OM}_0 , \mathbf{v}_0 . القيم الحدية لـ \mathbf{OM}_0 هي \mathbf{r}_1 و \mathbf{r}_1 مع \mathbf{r}_2 . أحسب قيمة السرعة في هاتين النقطتين بدلالة معطيات التمرين

ر التمرين 06: نقطة مادية M كتاتها m مربوطة بالمركز O بواسطة خيط غير قابل للتمدد و مهمل الكتلة، تتحرك على مسار دائرى شاقولى نصف قطره r.

 ${\bf v}_{\rm A},\,{\bf r},\,{\bf m}$ بدلالة ${\bf A}$ و ${\bf A}$ بدلالة -1 د أحسب شدة توتر الخيط عند النقطتين ${\bf A}$ و ${\bf g}$ ، هل القيم موجبة ${\bf v}_{\rm A}$ ،

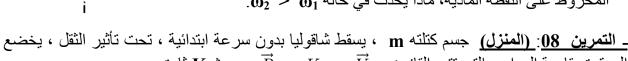
2- أُكتُب المعادلة الأساسية للتحريك ، ثم استنتج المعادلة التفاضلية للزاوية θ التي يصنعها OM مع الشاقول(لأجل مكاملة المعادلة نضرب طرفيها بالمقدار $(d \theta/dt)$ ثم استنتج السرعة عند اللحظة v_0 مع العلم أن السرعة الابتدائية v_0 هي v_0

(نكتب ${
m v}^2$ بدلالة ${
m v}_0$, ${
m g}$, ${
m r}$, ${
m \theta}$ أحسب عند ذلك شدة توتر الخيط

 $\theta_{\rm v}$ العتبر $\theta_{\rm v}$ قيمة الزاوية التي تكون من أجلها السرعة معدومة، و $\theta_{\rm T}$ القيمة التي يكون من أجلها التوتر معدوما، أستخرج عبارة كل من $\theta_{\rm v}$ و $\cos\theta_{\rm v}$ بدلالة نفس المعطيات ثم أرسمها بدلالة $\theta_{\rm v}$ و استنتج طبيعة الحركة حسب قيمة $\theta_{\rm v}$

- التمرين 07: نعتبر نقطة مادية معلقة في طرف خيط طوله L و طرفه الآخر ثابت عند النقطة O .

نفترض أن النقطة المادية تقوم بحركة دائرية منتظمة بسرعة زاوية ω_1 .


ا أوجد العلاقة بين ω_1 و ω_1 ، أحسب توتر الخيط Coslpha ، أحسب توتر الخيط

ين أن الحركة تكون ممكنة إذا كأنت $\omega_{
m l} \geq \omega_{
m l}$ ، عين هذه القيمة -2

و العزم الحرك، \overrightarrow{L} و العزم الحرك، أم عزم $\overrightarrow{P}=m$ و \overrightarrow{V} أ، ثم عزم \overrightarrow{L} محصلة القوى بالنسبة للنقطة (تحقق من نظرية العزم الحركي

4- نفتر ض أن النقطة المادية تتحرك هذه المرة على السطح الجانبي لمخروط نصف زاوية رأسه α ، بسرعة زاوية ثابتة $\overline{\alpha}$ حيث و أن الحركة تتم دون احتكاك، ما هي قيمة رد فعل $\omega_2 < \omega_1$

المخروط على النقطة المادية، ماذا يحدث في حالة $\omega_2 > \omega_1$.

إلى قوة مقاومة الهواء و التي تتبع القانون : $\vec{K}=K$ ، $\vec{R}=K$ ، حيث K ثابت موجب.

1- أكتب القانون الأساسي للتحريك في هذه الحالة

2- أستخرج المعادلة التفاضلية التي تحدد قانون تغير السرعة مع الزمن

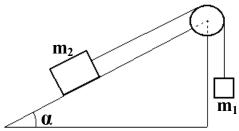
 $\overline{V_0}$ ماذا يحدث لو قذفت الكتلة بسرعة $\overline{V_0}$ نحو الأسفل.

4- عين في الحالتين قيمة السرعة الحدية

- التمرين 09: (المنزل) جسيم كتلته m و شحنته q موضوع داخل وسط حيث ينتشر حقل كهربائي من الشكل : $\vec{E}=E_0$ حيث E_0 ثابت موجب، في البداية يوجد الجسيم عند مركز الإحداثيات و يملك سرعة تصنع زّاویة lpha مع المحور \mathbf{Ox} نفترض بأن الوسط الذي ينتقل فيه الجسيم يؤثر فيه بقوة احتكاك لزج $\overline{V_0}$ مُن الشكل: \overrightarrow{V} حيث \overrightarrow{V} هي سرعة الجسيم. يمكننا إهمال الثقل أمام القوى الأخرى 1- أكتب العلاقة الأساسية للتحريك

2- أستخرج المعادلة التفاضلية للسرعة الجسيم ثم بين أن السرعة تكتب من الشكل:

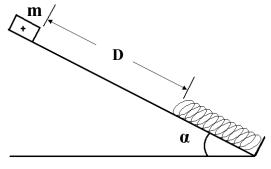
 \mathbf{a} , β , c , d أحسب $V_{y}=c.e^{-\beta t}+d$ و $V_{x}=\mathbf{a}.e^{-\beta t}$


. المسار ، y(t) , x(t) المسار ، x(t) المسار ، y(t) ، المx(t) .

التمرين 10: (المنزل) جملة مشكلة من كتلتين \mathbf{m}_1 و \mathbf{m}_2 مرتبطتان بواسطة خيط غير قابل للتمدد يعبر \mathbf{m}_1 عبر بكرة عديمة الكتلة حسب الشكل

2- أستخرج عبارة تسارع الكتلتين بدلالة α ، m_2 ، m_1 و α .

د. أدرس بدلالة m_1 و m_2 طبيعة و اتجاه الحركة، حدد التوازن m_1


4- نرید أن یکون التسارع $\gamma = 1/10.g$ ، ما هی نسبة الکتلتین بدلالة الزاوية lpha.

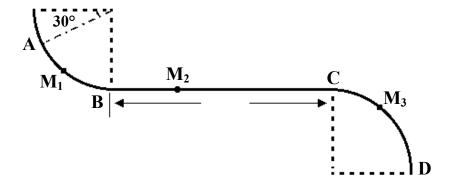
ـ التمرين 11: (المنزل) جسم كتلته m = 10Kg ينزلق f = 0.1 على مستوي مائل زاويته α و معامل احتكاكه 1- ما هي أصغر زاوية α_{\min} يبدأ الجسم الحركة معها

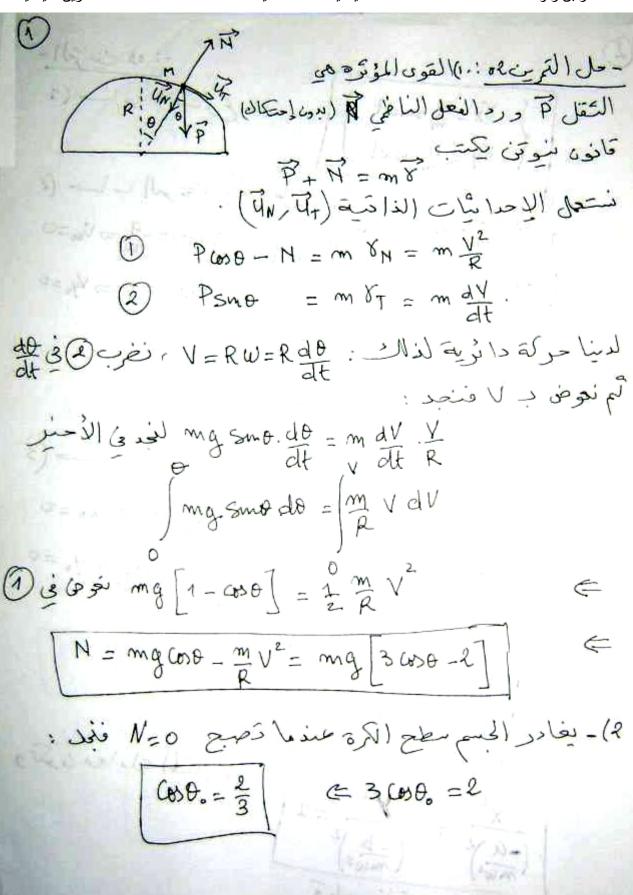
 $lpha=30^{\circ}>lpha_{
m min}$ ناخذ زاویة -2

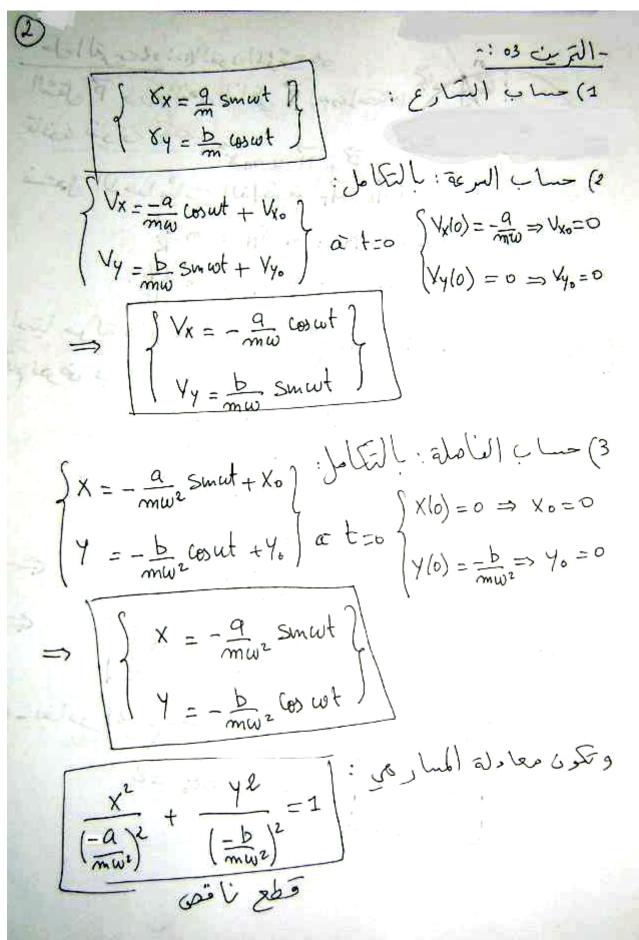
أـ أكتب القانون الأساسي للتحريك، و استخرج عبارة التسارع ب- إذا كانت سرعة الجسم الابتدائية معدومة، ما قيمة سرعته

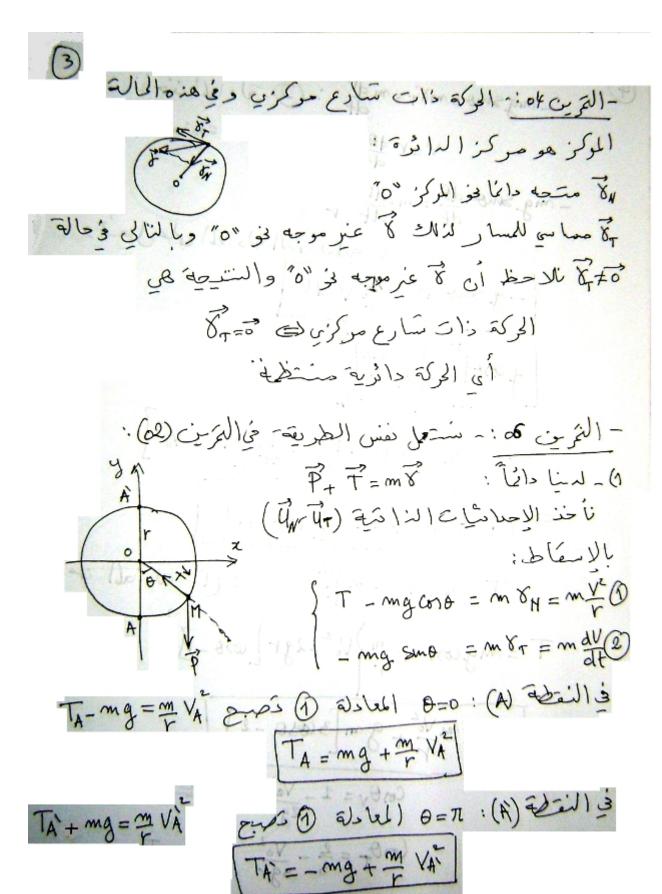
D = 10m بعد أن يقطع مسافة

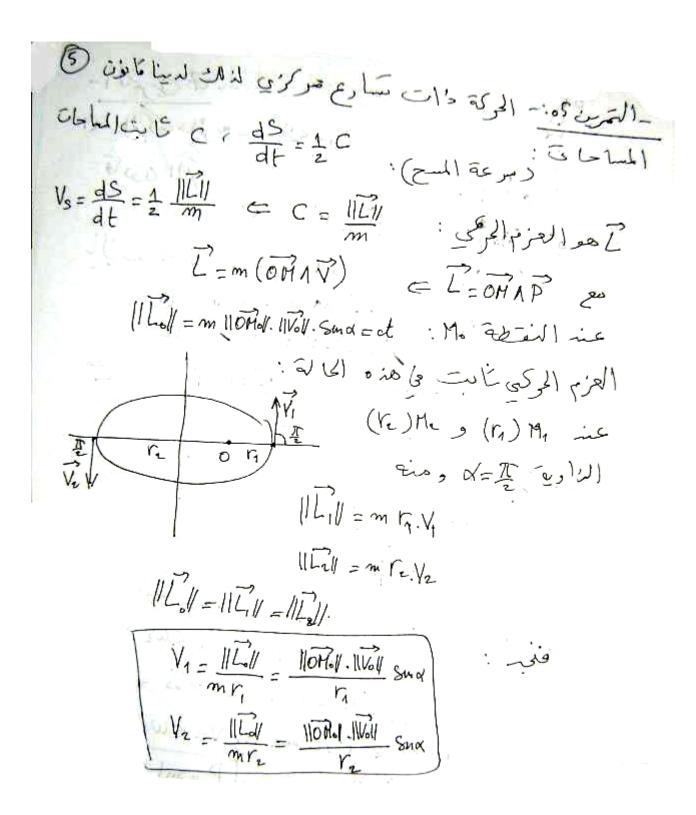
ت- عند هذه المسافة يصطدم الجسم بنابض ثابت مرونته

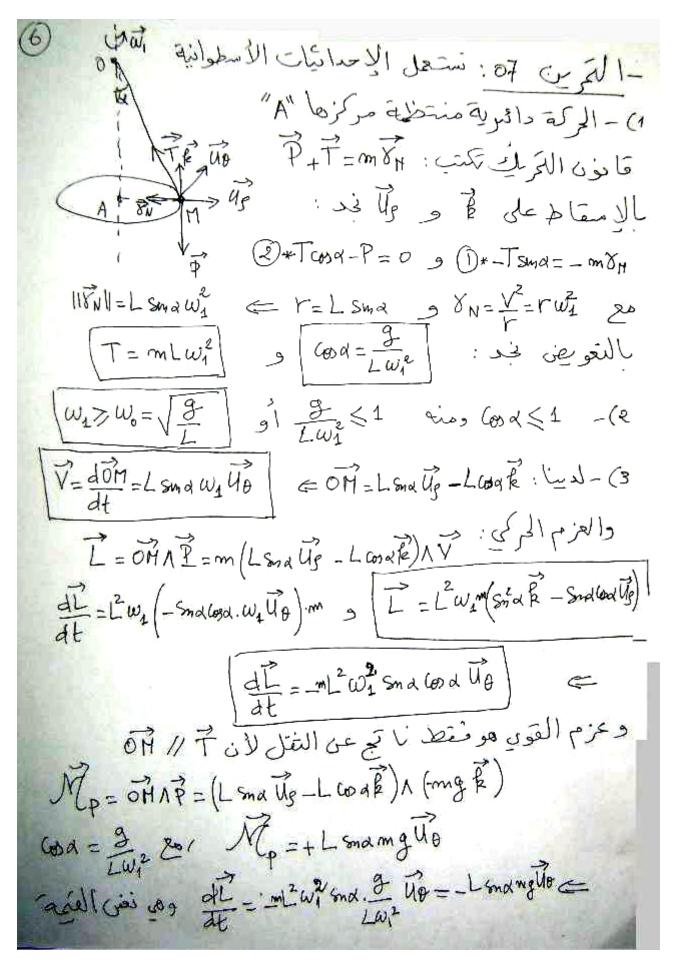

نيتقاص لمسافة ΔX ، أوجد قيمة الانكماش العظمى K=200 N/m ثـ يرتد الجسم نحو الأعلى لمسافة 'D'، أحسب هذه المسافة (نأخذ $g=10 m/S^2$)

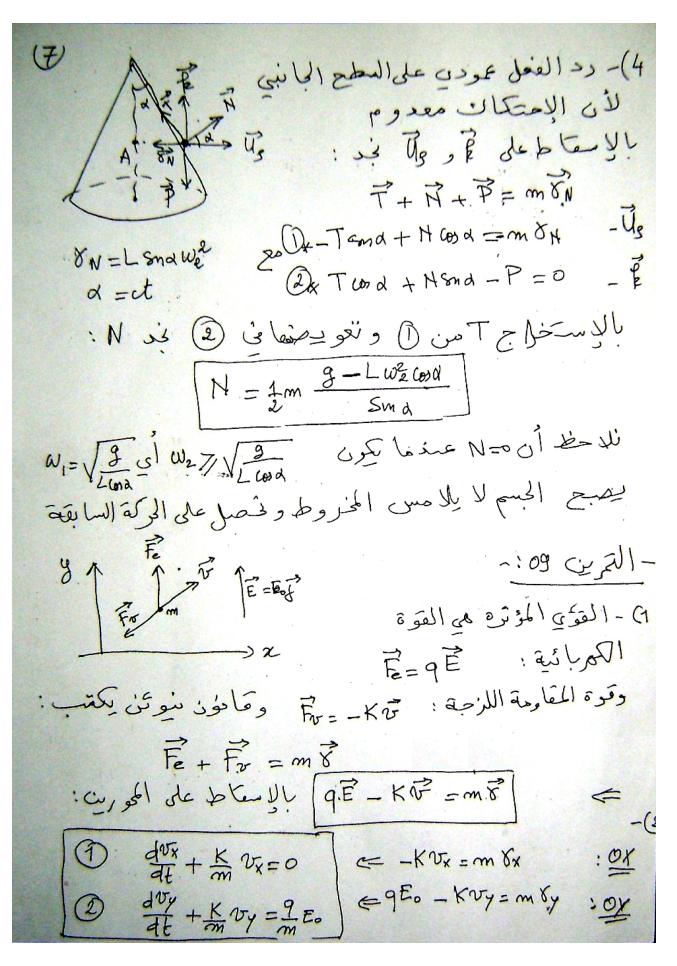

- التمرين 12: (المنزل) جسم كتلته m ينزلق على سطح موجه مشكل من ثلاثة أجزاء : AB جزء من دائرة نصف قطرها R ، و CD جزء مستقيم أفقي طوله CD ، و CD ربع آخر من دائرة لها نفس نصف القطر. ينزلق الجسم بدون احتكاك على الجزئين CD و CD و على الجزء CD باحتكاك معامله D نترك الجسم عند النقطة D , D , D , D باحث D ، D باحث D باحث D . D باحث D باحث

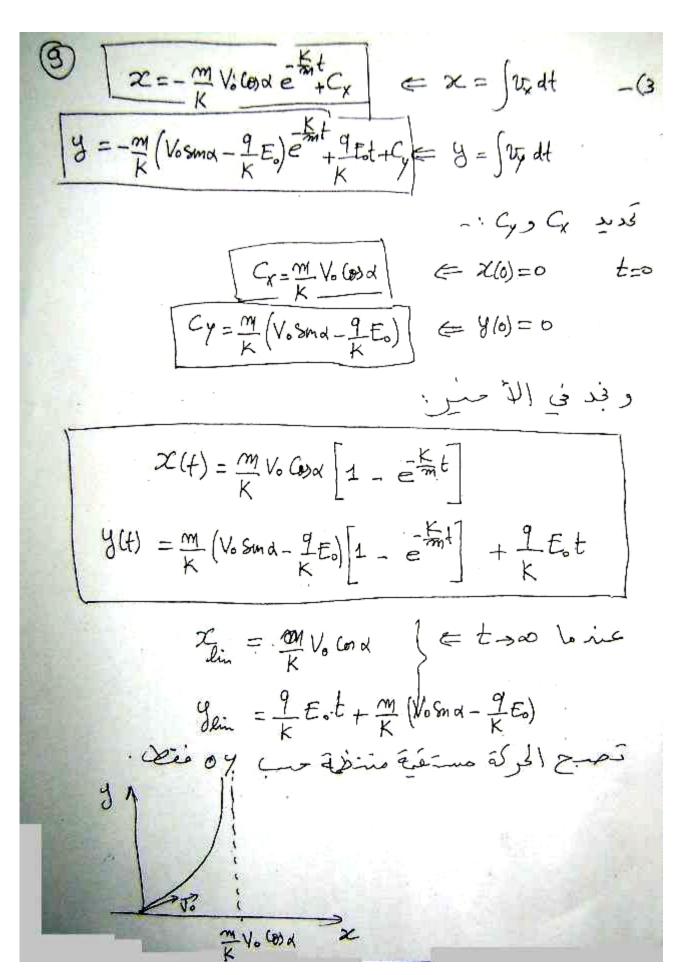

 ${f B}$ من الجزء ${f AB}$ ، ثم استنتج السرعة عند النقطة ${f M}_1$ من الجزء من المعتاد النقطة ${f B}$

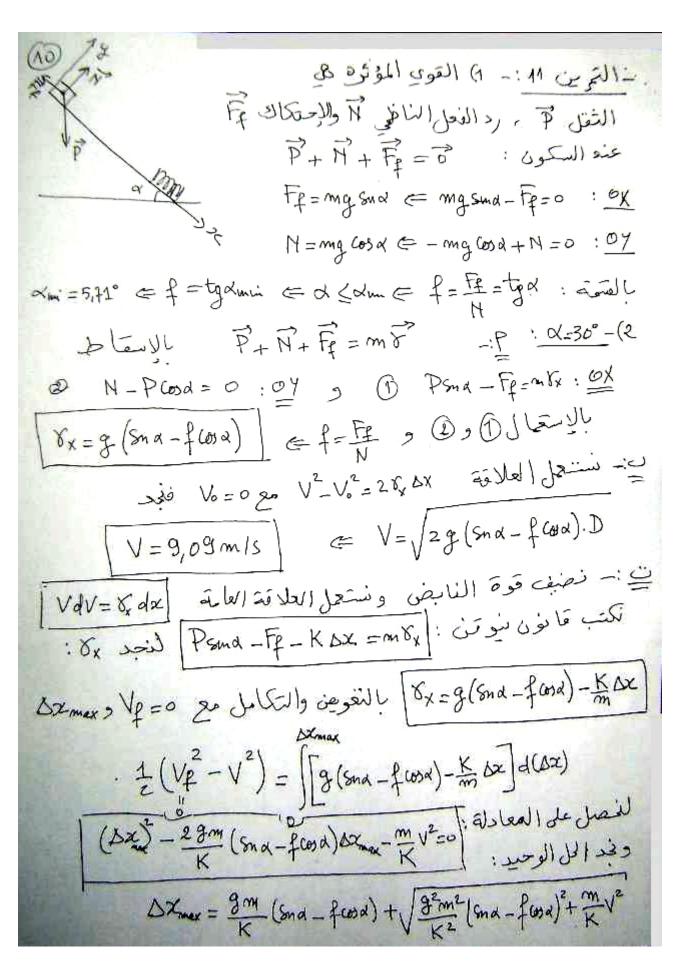

 ${f C}$ السرعة و رد الفعل عند نقطة كيفية ${f M}_2$ من الجزء ${f BC}$ ، أحسب السرعة عند النقطة -2

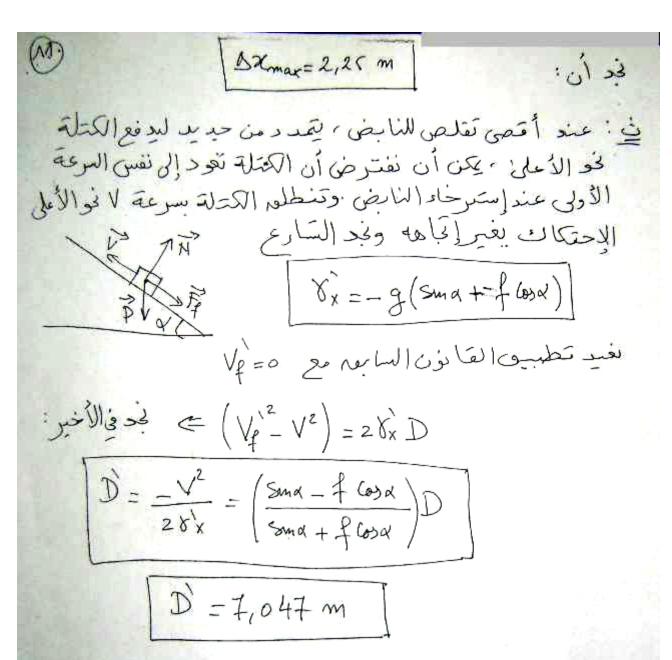

3- السرعة و رد الفعل عند نقطة كيفية M_3 من الجزء CD ، أوجد الزاوية التي يغادر بها الجسم هذا السطح








$$\frac{dU_{K}}{U_{K}} = \frac{K}{m}dt \qquad e \frac{dV_{K}}{dt} = -\frac{K}{m}U_{K} \qquad o \times \frac{1}{m}U_{K}$$


$$\frac{dU_{K}}{U_{K}} = \frac{K}{m}dt \qquad e \frac{dV_{K}}{dt} = -\frac{K}{m}U_{K} \qquad o \times \frac{1}{m}U_{K}$$

$$\frac{dV_{K}}{V_{K}} = \frac{V_{K}}{L} + C \qquad e \frac{1}{m}U_{K} \qquad o \times \frac{1}{m}U_{K}$$

$$\frac{dV_{K}}{U_{K}} = \frac{Q}{m}E \qquad e \qquad U_{K} = d \times \frac{1}{m}U_{K} \qquad o \times \frac{1}{m}U_$$

